Expand (1+0.5x)^4, simplifying the coefficients.

Step 1. Draw Pascal's triangle to find the coefficients. 1; 1 2 1 ; 1 3 3 1 ; 1 4 6 4 1. As you can see, each row starts and finishes with 1. The numbers in between are worked out by adding the two numbers on the row above. For this question, we will use the 4th row 1 4 6 4 1 since the expression is raised to the power of 4. This expansion will have 5 expressions.Step 2. For each term, both 1 and 0.5 are raised to the powers 0 to 4, where the sum of the powers adds up to 4. The power of x is increased from 0 to 4 as the term progresses. (1 + 0.5) 4 = 1(1)4(0.5)0x0 + 4(1)3(0.5)1x1 + 6(1)2(0.5)2x2 + 4(1)1(0.5)3x3 + 1(1)0(0.5)4x4 First we raise 1 to the power of 4, therefore 0.5 is raised to the power of 0. For the next term, the power of 1 decreases by 1 and the power of 0.5 is increased by 1, so that the sum of the terms still equates to 4. This is done until we get 5 terms in total. Step 3. The expression is simplified as followed: = 1 = 4(1/2)x + 6(1/4)x2+ 4(1/8)x3 + (1/16)x4 = 1 + x + 3/2x2 + 1/2x3 + 1/16x4

SS
Answered by Srikka S. Maths tutor

4109 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If given two parametric equations for a curve, how would you work out an equation for the gradient?


Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning