Express '6cos(2x) +sin(x)' in terms of sin(x).

6cos(2x) +sin(x).Using the double angle formula for cosine (or otherwise), cos(2x) = cos(x)cos(x) - sin(x)sin(x) .cos(2x) = cos^2(x) - sin^2(x) .Hence, 6cos(2x) +sin(x) = 6(cos^2(x) - sin^2(x)) + sin(x). Now use the trigonometric identity 1 = cos^2(x) + sin^2(x).6(cos^2(x) - sin^2(x)) + sin(x) = 6((1-sin^2(x)) - sin^2(x)) + sin(x) .6((1-sin^2(x)) - sin^2(x)) + sin(x) = 6 (1 - 2sin^2(x)) +sin(x) .Therefore, 6cos(2x) +sin(x) = 6 + sin(x) -12sin^2(x).6cos(2x) +sin(x) = (4sin(x) − 3)*(3sin(x) + 2) 


RM
Answered by Robbie M. Maths tutor

4755 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the straight line that passes through the points (1,2) and (2,4)


Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


What is the gradient of the quadratic function y=3x²?


f(x) = sinx. Using differentiation from first principles find the exact value of f' (π/6).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences