Express '6cos(2x) +sin(x)' in terms of sin(x).

6cos(2x) +sin(x).Using the double angle formula for cosine (or otherwise), cos(2x) = cos(x)cos(x) - sin(x)sin(x) .cos(2x) = cos^2(x) - sin^2(x) .Hence, 6cos(2x) +sin(x) = 6(cos^2(x) - sin^2(x)) + sin(x). Now use the trigonometric identity 1 = cos^2(x) + sin^2(x).6(cos^2(x) - sin^2(x)) + sin(x) = 6((1-sin^2(x)) - sin^2(x)) + sin(x) .6((1-sin^2(x)) - sin^2(x)) + sin(x) = 6 (1 - 2sin^2(x)) +sin(x) .Therefore, 6cos(2x) +sin(x) = 6 + sin(x) -12sin^2(x).6cos(2x) +sin(x) = (4sin(x) − 3)*(3sin(x) + 2) 


RM
Answered by Robbie M. Maths tutor

5377 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.


Integrate ln(x).


How would you expand (x+5y)^5?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning