Express '6cos(2x) +sin(x)' in terms of sin(x).

6cos(2x) +sin(x).Using the double angle formula for cosine (or otherwise), cos(2x) = cos(x)cos(x) - sin(x)sin(x) .cos(2x) = cos^2(x) - sin^2(x) .Hence, 6cos(2x) +sin(x) = 6(cos^2(x) - sin^2(x)) + sin(x). Now use the trigonometric identity 1 = cos^2(x) + sin^2(x).6(cos^2(x) - sin^2(x)) + sin(x) = 6((1-sin^2(x)) - sin^2(x)) + sin(x) .6((1-sin^2(x)) - sin^2(x)) + sin(x) = 6 (1 - 2sin^2(x)) +sin(x) .Therefore, 6cos(2x) +sin(x) = 6 + sin(x) -12sin^2(x).6cos(2x) +sin(x) = (4sin(x) − 3)*(3sin(x) + 2) 


RM
Answered by Robbie M. Maths tutor

5093 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first derivative of y=2^x


Express (5x + 4)/(x +2)(x - 1) in partial fractions.


Find Dy/Dx of (x^2+4x)^3


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning