Find dy/dx when y = x(4x + 1)^1/2

Here we can use the product rule where dy/dx = v du/dx + u dv/dx.We let u = x and v = (4x + 1)1/2 which means we get du/dx = 1 and by using the chain rule we get dv/dx = 1/2(4x + 1)-1/24 which simplifies to dv/dx = 2(4x + 1)-1/2.Plugging these results into the equation for the product rule we get: dy/dx = (4x + 1)1/2 + 2x(4x + 1)-1/2.This result can also be simplified by taking out a factor of (4x + 1)-1/2 to get dy/dx = (4x + 1)-1/2((4x+1) +2x) which proves thatdy/dx = (4x + 1)-1/2(6x +1). Remember that (4x + 1)-1/2 can also be written as the square root on the denominator of a fraction.

RN
Answered by Rebecca N. Maths tutor

5629 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


How many solutions are there of the equation a+b+c=12, where a,b,c are non-negative integers?


Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


What is the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences