(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19

Let P(n) represent the statement that 'f(n) is divisible by 19'. For the basis step, I prove that P(1) is true: f(1) = 33(1)-2+ 23(1)+1 = 19. 19 is divisible by 19 so P(1) is true. I now want to prove that P(k) implies P(k+1) for all positive integers k. I therefore assume P(k), and I can write: 33k-2+ 23k+4 = 19m for some positive integer m. f(k+1) = 33k+1+23k+4 = 27(33k-2) + 8(33k+1) = 8(33k-2+23k+1) + 19(33k-2). I now substitute my assumption: f(k+1) = 19(8m + 33k-2). So P(k) implies P(k+1). Since P(1) is true, P(n) is therefore true for all positive integers n as required.

DL
Answered by Daniel L. Maths tutor

10216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


Solve 7x – 9 = 3x + 2


Differentiate the following equation: f(x) = 5x^3 + 6x^2 - 12x + 4


How do I find the points of intersection between two curves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning