(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19

Let P(n) represent the statement that 'f(n) is divisible by 19'. For the basis step, I prove that P(1) is true: f(1) = 33(1)-2+ 23(1)+1 = 19. 19 is divisible by 19 so P(1) is true. I now want to prove that P(k) implies P(k+1) for all positive integers k. I therefore assume P(k), and I can write: 33k-2+ 23k+4 = 19m for some positive integer m. f(k+1) = 33k+1+23k+4 = 27(33k-2) + 8(33k+1) = 8(33k-2+23k+1) + 19(33k-2). I now substitute my assumption: f(k+1) = 19(8m + 33k-2). So P(k) implies P(k+1). Since P(1) is true, P(n) is therefore true for all positive integers n as required.

DL
Answered by Daniel L. Maths tutor

9352 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

An object of mass 2kg is placed on a smooth plane which is inclined at an angle of 30 degrees from the ground. Calculate the acceleration of the object.


Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.


How to differentiate 2x^5-4x^3+x^2 with respect to x


Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences