Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).

Firstly, recall the definition of a logarithm: if y = loga(x), then this means that y is the power you have to raise a to, to get x, that is ay = x.Now, we want to introduce a new base, b. Let's take log to base b of both sides of the above equation. We get logb(ay) = logb(x). But remember our rules of logarithms -- we know that ylogb(a) = logb(ay), so we get that ylogb(a) = logb(x).Lastly, divide both sides by logb(a), to obtain: y = logb(x)/logb(a). Aha! Remember we started off by saying that y = loga(x). Therefore, loga(x) = logb(x)/logb(a), and our proof is complete!

TH
Answered by Tom H. Maths tutor

12203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


Why does integration by parts work?


Solve the differential equation dy/dx=(y^(1/2))*sin(x/2) to find y in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning