Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).

Firstly, recall the definition of a logarithm: if y = loga(x), then this means that y is the power you have to raise a to, to get x, that is ay = x.Now, we want to introduce a new base, b. Let's take log to base b of both sides of the above equation. We get logb(ay) = logb(x). But remember our rules of logarithms -- we know that ylogb(a) = logb(ay), so we get that ylogb(a) = logb(x).Lastly, divide both sides by logb(a), to obtain: y = logb(x)/logb(a). Aha! Remember we started off by saying that y = loga(x). Therefore, loga(x) = logb(x)/logb(a), and our proof is complete!

TH
Answered by Tom H. Maths tutor

9790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the indefinite integral ∫5exp(3-4x)dx ?


Integrate 3x^4-4x^2+3/x


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


Solve the equation |3x +4a| = 5a where a is a positive constant.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences