Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).

So we have the equation initially in the form 3^(5x-2)=4^(6-x), and as the solution involves log10, then  a sensible first move would be to take log10 of both sides, giving log10(3^(5x-2)) = log10(4^(6-x)).

Using the log law that loga(k) = kloga, we can rewrite this as (5x-2)log10(3) = (6-x)log10(4).

Then expanding the brackets, and taking the x values to one side and the constants to the other gives, 5xlog10(3) + xlog10(4) = 6log10(4) + 2log10(3).

Taking x out as a factor, we get x(5log10(3) + log10(4)) =  6log10(4) + 2log10(3).

Using the log law we made use of earlier in the question (loga(k) = kloga), this can be written as x(log10(243) + log10(4)) = log10(4096) + log10(9).

We can then use the log law, loga(b) + loga(c) = loga(bc), to write the equations as x(log10(972)) = log10(36864). 

Now all we have to do is divide by log10(972), and we have our answer, so,

x = log10(36864) / log10(972).

EB
Answered by Eloise B. Maths tutor

6168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does integration work?


Differentiate y = (6x-13)^3 with respect to x


The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning