differentiate with respect to x. i). x^(1/2) ln (3x),

From this we can see that equation has 2 parts therefore we should look to using the product rule which is used to differiantiate a two functions multiplied together so (fg)'=f'g+fg'. In this question the differential of x^(1/2) is simply 1/2x^1/2 which can be rearranged using indices rules to 1/2x^1/2. Differentiating ln(3x) requires product rule in its own respect one can denote (3x) as U the ln(U) would simply be 1/U using ln then differential of u is 3. Therefore the differential on ln(3x) is 1/x simplified.
Overall the answer should ln(3x)/2x^(1/2) + 1/x^(1/2)

JD
Answered by Jesse D. Maths tutor

7276 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate y = (4-x)^2


Why bother with learning calculus?


Find the inverse of f(x) = (3x - 6)/2


Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning