Solve the equation 8x^6 + 7x^3 -1 = 0

The first thing to recognise is this is a quadratic in disguise, therefore we can rewrite the equation in terms of a new variable y.
Where y=x3
The equation then becomes 8y2+7y-1=0 .
We then factorise this into (8y-1)(y+1)=0 and work out y=1/8 or -1.

Then substitute this into the equation for y=x3 so that x3=1/8 and x3=-1
Solving for x gives us x=1/2 or -1
Things to note: A common mistake is that even though the square root of -1 has no solution the cube root of -1 does.

KP
Answered by Kelan P. Maths tutor

6881 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


How do I find the equation of the tangent to y = e^(x^2) at the point x = 4?


Given that 3^(-3/2) = a* 3^(1/2), find the exact value of a.


The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences