Solve the equation 8x^6 + 7x^3 -1 = 0

The first thing to recognise is this is a quadratic in disguise, therefore we can rewrite the equation in terms of a new variable y.
Where y=x3
The equation then becomes 8y2+7y-1=0 .
We then factorise this into (8y-1)(y+1)=0 and work out y=1/8 or -1.

Then substitute this into the equation for y=x3 so that x3=1/8 and x3=-1
Solving for x gives us x=1/2 or -1
Things to note: A common mistake is that even though the square root of -1 has no solution the cube root of -1 does.

KP
Answered by Kelan P. Maths tutor

7348 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 2xln(x)


Express 4sin(x)+6cos(x) in terms of Rsin(x+a) where R and a are constants to be determined (a should be given in rad).


Differentiate the equation x^2 + 2y^2 = 4x


Find the derivative of f(x)=x^2*e^x+x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning