Integrate exp(2x)cos(8x) by parts

Let u=exp(2x) and v'=cos(8x)From these you can obtain u' and vu=2exp(2x) and v=1/8 sin(8x)Formula: integral(uv'dx)=uv-integral(vu'dx)=1/8 exp(2x)sin(8x)-integral(1/4 sin(8x)exp(2x))=1/8exp(2x)sin(8x)+1/16cos(8x)exp(2x)

CD
Answered by Chloe D. Maths tutor

3743 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)


d/dx[sin(x) + cos(x)]


Turning points of the curve y = (9x^2 +1)/3x+2


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning