A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)

u = x v = (2x-2)^(0.5)u' = 1 v' = (2x-2)^(-0.5)f'(x) = (vu' - uv') / v^2Therefore, f'(x) = (((2x-2)^(0.5) * 1) - (x * (2x-2)^(-0.5))) / ((2x-2)^(0.5))^2f'(x) = (2x - 2 - x) / (2x-2)^(3/2) = (x-2) / (2x-2)^(3/2)Would be easier to follow with the whiteboard function

IF
Answered by Isaac F. Maths tutor

9415 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the probability to obtain exactly 2 heads out of 3 tosses of a fair coin?


Use integration by parts to find the integral of sin(x)*exp(x)


Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.


Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning