Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)

The turning point of a curve is the point at which the gradient is 0 as from there it stops rising and starts falling or vice versa. To find this we differentiate y with respect to x (dy/dx) to find the general equation of the gradient of the line. As we have differentiation by parts we assign u=e^(3x) and v=cos(4x). This means du/dx = 3e^(3x) and dv/dx = -4sin(4x). Therefore y = uv and dy/dx = du/dxv+u*dv/dx. By substituting in the values found above we get dy/dx = 3e^(3x)*cos(4x) - 4e^(3x)*sin(4x).Now we have the equation for the gradient of the curve we set dy/dx = 0 for the turning point so 0 = 3e^(3x)*cos(4x) - 4e^(3x)*sin(4x). By rearranging and dividing everything by e^(3x) as it is a common factor that is never 0 we get 3cos(4x)=4sin(4x). From here we see we can make this tan(4x)=3/4 and x = 0.16088 from calculator display. As this is outside the bounds of the curve we need to find the next solution, as we are using tan(4x) we need to add pi/4 to the answer as tan(4x) repeats every pi/4 radians so x = 0.9463 to 4 dp.

JW
Answered by James W. Maths tutor

13450 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


Integrate 3 sin(x) + cos(2x)


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


Differentiate (x^2)cos(3x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences