Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)

The turning point of a curve is the point at which the gradient is 0 as from there it stops rising and starts falling or vice versa. To find this we differentiate y with respect to x (dy/dx) to find the general equation of the gradient of the line. As we have differentiation by parts we assign u=e^(3x) and v=cos(4x). This means du/dx = 3e^(3x) and dv/dx = -4sin(4x). Therefore y = uv and dy/dx = du/dxv+u*dv/dx. By substituting in the values found above we get dy/dx = 3e^(3x)*cos(4x) - 4e^(3x)*sin(4x).Now we have the equation for the gradient of the curve we set dy/dx = 0 for the turning point so 0 = 3e^(3x)*cos(4x) - 4e^(3x)*sin(4x). By rearranging and dividing everything by e^(3x) as it is a common factor that is never 0 we get 3cos(4x)=4sin(4x). From here we see we can make this tan(4x)=3/4 and x = 0.16088 from calculator display. As this is outside the bounds of the curve we need to find the next solution, as we are using tan(4x) we need to add pi/4 to the answer as tan(4x) repeats every pi/4 radians so x = 0.9463 to 4 dp.

JW
Answered by James W. Maths tutor

13542 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cup of coffee is cooling down in a room following the equation x = 15 + 70e^(-t/40). Find the rate at which the temperature is decreasing when the coffee cools to 60°C.


Solve the following: sinx - cosx = 0 for 0≤x≤360


A small stone is projected vertically upwards from a point O with a speed of 19.6m/s. Modelling the stone as a particle moving freely under gravity, find the length of time for which the stone is more than 14.7 m above O


You're on a game show and have a choice of three boxes, in one box is £10, 000 in the other two are nothing. You pick one box, the host then opens one of the other boxes showing it's empty, should you stick or switch?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences