Integrate (lnx)/x^2 dx between limits 1 and 5

Let I = integral[(lnx)/x^2 dx] for simplicity.Firstly, we realise we must use integration by parts. This is:Integral [u(x)v'(x) dx] = u(x)v(x) - Integral[u'(x)v(x) dx]So we can see that, by letting u(x)=lnx and v'(x)=1/x^2, we have:I = (lnx)(-1/x) - integral[(1/x)(-1/x) dx] = -(lnx)/x + integral [1/x^2 dx] = -(lnx)/x - 1/x (+C would be used for indefinite integral; where there are no limits)Plug in the limits, we have:-ln5/5-1/5+ln1/1+1/1=4/5 - (ln5)/5or (4-ln5)/5

JL
Answered by Jimmy L. Maths tutor

3500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 20x −x^2 −2x^3 . Find its stationary point(s).


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


How to do Integration by Parts?


What's the point of writing my mathematics well if I don't get extra marks for it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning