(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?

Stationary points are points at which the gradient of the curve is zero. The gradient is given by dy/dx so we start by computing this using product rule to give us dy/dx=-sin2x+cos2x. Notice that this is the double angle formula for cos(2x) so we see that dy/dx=cos(2x). Now if we set the gradient equal to zero then dy/dx=cos(2x)=0, and we know that the cosine function is zero at the points (pi/2+kpi) where k is an integer. Hence we may set 2x=pi/2+kpi which gives us our solution x=pi/4+k*pi/2.Notice that this is true for any integer k so there are infinitely many stationary points. This is the case because sine and cosine are periodic functions so their product, y=sin(x)cos(x) is also periodic.

TG
Answered by Tristan G. Maths tutor

5570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Line AB has equation 6x + y - 4 = 1. AB is perpendicular to the line y = mx + 1, find m.


Solve the equation sin2x = tanx for 0° ≤ x ≤ 360°


Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.


A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning