(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?

Stationary points are points at which the gradient of the curve is zero. The gradient is given by dy/dx so we start by computing this using product rule to give us dy/dx=-sin2x+cos2x. Notice that this is the double angle formula for cos(2x) so we see that dy/dx=cos(2x). Now if we set the gradient equal to zero then dy/dx=cos(2x)=0, and we know that the cosine function is zero at the points (pi/2+kpi) where k is an integer. Hence we may set 2x=pi/2+kpi which gives us our solution x=pi/4+k*pi/2.Notice that this is true for any integer k so there are infinitely many stationary points. This is the case because sine and cosine are periodic functions so their product, y=sin(x)cos(x) is also periodic.

TG
Answered by Tristan G. Maths tutor

4916 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.


Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]


find the integral between the limits 0 and pi/2 of sin(x)cos(x) with respect to x.


2 equations intersect each other, y = x + 2 and y = x^2. Find the area of the shaded region between the points of intersection giving your answer to 3 significant figures. (shaded region will be shown)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences