How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.

First you must show that the statement on the right hand side is true for n=1:
Σi=0 iwhen n=1, is equal to 12=1
(1/6)(1+1)(1+2)=(1/6)(2)(3)=1
This means that the statement is true for n=1.
Next you assume that it is true for 'k', where k is any number, and so you get;
Σi=0 i2 when n=k, is equal to (k/6)(k+1)(2k+2)
You then have to show that the statement is true for n=k+1 which would make;
Σi=0 i2 when n=k+1, is equal to (k+1)/6(k+2)(2k+3) call this 1)
As the left hand side is a sum, it can be written as;
Σi=0 i2 when n=k + (k+1)2
We already know the sum of i2 when n=k and so we can substitute it in;
(k/6)(k+1)(2k+1) + (k+1)2
We then try and reach 1)
We can factorise out (k+1)
(k+1)[(k/6)(2k+1) +k+1]
Next, multiply the inner brackets;
(k+1)[2k2/6+k/6 +k+1]
Take out a factor of 1/6
(k+1)/6(2k2+k+6k+6)= (k+1)/6(2k2+7k+6)
Finally, factorise the inner bracket;
(k+1)/6(k+2)(2k+3)
As this is equal to 1), we have proven that the statement is true for all values of n.

JB
Answered by James B. Maths tutor

19105 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


(C3) Show that 4csc^2(x) - cot^2(x) = k can be expressed as sec^2(x) = (k-1)/(k-4) where k != 4


Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)


Binomially expand the equation (2+kx)^-3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences