A curve has equation x = (y+5)ln(2y-7); (i) Find dx/dy in terms of y; (ii) Find the gradient of the curve where it crosses the y-axis.

(i) To find the derivative we will use the product rule. Let u = y+5 and v=ln(2y-7). Then dx/dy = du/dyv + udv/dy = ln(2y-7) + (y+5)*2/2y-7 (used the chain rule in 2nd term - can explain this on white board)(ii) Curve crosses y-axis when x=0. This happens when y=-5 or y=4. y=-5 is not valid since we will get ln(-17) which isn't possible. Plugging y=4 we get that dx/dy = 18, and hence the gradient which is defined as dy/dx = 1/18.

SP
Answered by Szymon P. Maths tutor

10928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


y=4sin(kx) write down dy/dx.


Starting from the fact that acceleration is the differential of velocity (dv/dt = a) derive the SUVAT equations.


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning