Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°

sin2θ = 2sinθcosθ (double angle formula for sine)cos2θ = cos2θ - sin2θ (double angle formula for cosine) = 2cos2θ - 1 (utilising the trignometric identity sin2θ + cos2θ = 1)
We substitute these into our original equation to get4sinθcosθ = 1 + 2cos2θ - 1
Rearranging we getcosθ(cosθ - 2sinθ) = 0
Therefore, either cosθ = 0 or cosθ - 2sinθ = 0.
cosθ = 0 when θ = 90° only in the range we are given (draw a diagram)
We can divide the right hand equation by cosθ (note this is only valid when cosθ ≠ 0 <--> when θ ≠ 90°)This gives us1 - 2tanθ = 0 (Use inequality tanθ = sinθ/cosθ)
Which rearrages totanθ = 1/2Soθ = 26.6° only (draw diagram)(Note θ ≠ 90° so this was all valid)

We have θ = 26.6° and 90° as solutions.

SN
Answered by Samuel N. Maths tutor

12538 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning