A cuboid has length x cm. The width of the cuboid is 4 cm less than its length. The height of the cuboid is half of its length. The surface area of the cuboid is 90 cm^2 . Show that 2x^2 − 6x − 45 = 0

Take each side of the cuboid as an algebraic expression and multiply each by 2 to account for both sides of the shape. For example, (x)(x-4), which could be expanded to x2 -4x, and then multiplied by 2 to reach 2x2 -8x. Do the same for the other two expressions and then find the sum of all the sides together.(2)(x)(x/2) = x2. (2)(x-4)(x/2) = x2-4x. So, 2x2-8x +x2+x2-4x = 90 (90 here is the surface area of the cuboid we saw in the question). By simplifying this equation we reach 4x2-12x-90 = 0. Divide by 2, and we reach 2x2-6x-45 =0

TM
Answered by Tom M. Maths tutor

10756 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 5x + y = 21, x - 3y = 9


How do you solve simultaneous equation where one of them involves powers?


Simplify and then solve by factorisation 3x(x+2)-7=2, to find x.


A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences