Consider f(x)=x/(x^2+1). Find the derivative f'(x)

To answer this question we need to decide which differentiation rule to use . The quotient rule looks like the obvious choice, so lets try that. If f(x)=u(x)/v(x) (being careful that v(x) is not zero anywhere, so f makes sense) we have that f'(x)=(v(x)u'(x)-u(x)v'(x))/(v(x)^2). In our example we have u(x)=x and v(x)=x^2+1. Taking derivatives gives u'(x)=1 and v'(x)=2x. So applying the quotient rule we have f'(x)=((x^2+1)-2x^2)/((x^2+1)^2) = (1-x^2)/((x^2+1)^2)

JH
Answered by Jack H. Maths tutor

4154 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


Differentiate y=(3+sin(2x))/(2+cos(2x))


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


Solve the equation: 5^(2x+1) = 7, giving your answer correct to four decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning