Consider f(x)=x/(x^2+1). Find the derivative f'(x)

To answer this question we need to decide which differentiation rule to use . The quotient rule looks like the obvious choice, so lets try that. If f(x)=u(x)/v(x) (being careful that v(x) is not zero anywhere, so f makes sense) we have that f'(x)=(v(x)u'(x)-u(x)v'(x))/(v(x)^2). In our example we have u(x)=x and v(x)=x^2+1. Taking derivatives gives u'(x)=1 and v'(x)=2x. So applying the quotient rule we have f'(x)=((x^2+1)-2x^2)/((x^2+1)^2) = (1-x^2)/((x^2+1)^2)

JH
Answered by Jack H. Maths tutor

3985 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


If a curve has equation y = (-8/3)x^3 - 2x^2 + 4x + 18, find the two x coordinates of the stationary points of this curve.


Can you teach me how to rationalise the denominator of an algebraic expression?


how do I differentiate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences