Consider f(x)=x/(x^2+1). Find the derivative f'(x)

To answer this question we need to decide which differentiation rule to use . The quotient rule looks like the obvious choice, so lets try that. If f(x)=u(x)/v(x) (being careful that v(x) is not zero anywhere, so f makes sense) we have that f'(x)=(v(x)u'(x)-u(x)v'(x))/(v(x)^2). In our example we have u(x)=x and v(x)=x^2+1. Taking derivatives gives u'(x)=1 and v'(x)=2x. So applying the quotient rule we have f'(x)=((x^2+1)-2x^2)/((x^2+1)^2) = (1-x^2)/((x^2+1)^2)

JH
Answered by Jack H. Maths tutor

4329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A 1kg mass is launched from the ground into the air at an angle of 30 degrees to the horizontal and with initial speed 25 ms^-1. Assuming negligible air resistance, how far from the starting point will the mass travel before it hits the ground?


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning