Consider f(x)=x/(x^2+1). Find the derivative f'(x)

To answer this question we need to decide which differentiation rule to use . The quotient rule looks like the obvious choice, so lets try that. If f(x)=u(x)/v(x) (being careful that v(x) is not zero anywhere, so f makes sense) we have that f'(x)=(v(x)u'(x)-u(x)v'(x))/(v(x)^2). In our example we have u(x)=x and v(x)=x^2+1. Taking derivatives gives u'(x)=1 and v'(x)=2x. So applying the quotient rule we have f'(x)=((x^2+1)-2x^2)/((x^2+1)^2) = (1-x^2)/((x^2+1)^2)

JH
Answered by Jack H. Maths tutor

3924 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I evaluate composite functions?


A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


Find the roots of the following quadratic equation: x^2 +2x -15 =0


Express 3x+1/(x+1)(2x+1) in partial fractions


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences