Answers>Maths>IB>Article

Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.

Setting the two equations equal to one another to find the intersection boundaries:x^2+16x+4=6x+4; x^2+16x+4-6x-4=0; x^2+10x=0;x(x+10)=0; x=0, x=-10. Setting up the volume of revolution (N.B. Due to typing restrictions, the boundaries will be applied at the end): V=|piInt((y^2)dx)|, where y=y2-y1, as specified by the question. Doing the integration separately to simplify the calculations: I=Int((y^2)dx)=Int(-(x^2+10x)^2dx)=Int(-(x^4+20x^3+10x^2)dx)=-(x^5/5+5x^4+100x^3/3) Hence, substituting the result above into the original volume equation, and taking common fractions: V=|-pi/15(3x^5+75x^4+500x^3)| Applying the boundaries: V=|-pi/15*(-1)(-310^5+7510^4-50010^3)|=|-0.5pi/1510^5|=|-pi/3010^5|. Therefore, the Volume of the generated solid is pi/30*10^5 units cubed.

FG
Answered by Filippos G. Maths tutor

2269 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Can you explain the approach to solving IB maths induction questions?


IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


The quadratic equation 2x^2-8x+1 = 0 has roots a and b. Find the value of a + b and ab


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning