The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .

Since we need to find dy/dx, we must first differentiate the equation implicitly which gives us: 8x - 3y2dy/dx - 4y - 4xdy/dx + 2yln(2)dy/dx = 0. Because we are given a point, we can substitute in the x and y values of that point which results in: -16 - 48dy/dx - 16 + 8dy/dx + 16ln(2)dy/dx = 0.We now have an equation which is easily solved by rearrangement. First we bring all dy/dx's to one side: 16ln(2)dy/dx - 40dy/dx = 32. And then we isolate dy/dx: dy/dx(16ln(2) - 40) = 32 => dy/dx = 32/(16ln(2) - 40).

SN
Answered by Samuel N. Maths tutor

7412 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution to the differential equation dy/dx = y/(x+1)(x+2)


The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


Differentiate the function f(x) = x*sin(x)


Find the inverse of f(x) = (3x - 6)/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences