A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x

  1. y = cos2θ . 2) cos2θ = 1 - 2sin²θ. 3) x = 2sinθ. 4) x² = 4sin²θ. 5) (1/2)x² = 2sin²θ. 6) y = 1 - (1/2)x².
NB
Answered by Nick B. Maths tutor

16908 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


A curve has equation y = (12x^1/2)-x^3/2


Find the turning points on the curve with the equation y=x^4-12x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning