Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)

First, what is a tangent? A line which touches a circle (or ellipse) at just one point. In our case (-3,2)
As it touches the line at one point, it is perpendicular the radius at (-3,2). Which implies that the gradient of the tangent is the negative reciprocal of the gradient of the the radius at (-3,2).
To work out the gradient of the radius at (-3,2) we need to know the centre point of the circle.
Rearrange the equation of the circle into square form yielding, centre as (-5,-1)
With two points on the same line we can work out the gradient of the radius at (-3,2). It's 3/2
So gradient of the tangent is the negative reciprocal of 3/2 which is -2/3.
We now have a point on the tangent line (-3,2) and the gradient of the line, hence we can work out the equation of the tangent. Solving yields 2x+3y=0
NOTE: I will draw a diagram on the whiteboard and do the arithmetic in the session also

PD
Answered by Patrick D. Maths tutor

6105 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y =(4x)/(x^2+5) (a) Find dy/dx, writing your answer as a single fraction in its simplest form. (b) Hence find the set of values of x for which dy/dx<0


A cuboid has a rectangular cross section where the length of the rectangle is equal to twice its width x cm. THe volume is 81 cm^3. a) show that the total length L cm of the cuboid is given by L=12x+162/x^2


A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


Find the exact gradient of the curve y = ln(1-cos 2x) at the point with x-coordinate π/6.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning