Express (9x^2 + 43x + 8)/(3+x)(1-x)(2x+1) in partial fractions.

A/(3+x) + B/(1-x) + C/(2x+1) = (9x^2 + 43x + 8)/(3+x)(1-x)(2x+1)So... A(1-x)(2x+1) + B(3+x)(2x+1) + C(3+x)(1-x) = (9x^2 + 43x + 8)Insert x=1Equation becomes 12B = 60 so B = 5.Then insert x=-3Equation becomes -20A = -40 so A = 2Then insert x = -0.5Equation becomes 3.75C = -11.25 so C = -3.
So answer is 2/(3+x) + 5/(1-x) - 3(2x+1).

AV
Answered by Abhik V. Maths tutor

6153 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


Using logarithms solve 8^(2x+1) = 24 (to 3dp)


Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences