A curve has equation y=2x^3. Find dy/dx.

We differentiate here to find the gradient, dy/dx, i.e. the differenitial of y in terms of x. As the right handside is purely dependant on x, this is simple. We can just multiply through by the power, i.e. 2x3=6, then negate the power by one, 3-1=2. Therefore giving us dy/dx = 6x^2.

CT
Answered by Claire T. Maths tutor

4904 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the distance of the centre of mass from AB and ALIH of the uniform lamina.


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning