How do you find the stationary points on a curve?

Let y = f(x). The gradient of the tangent to the curve at a stationary point is equal to 0. To find an equation for the gradient of the curve, differentiate f(x) to get dy/dx. Because we are looking for stationary points, set the equation for dy/dx (the gradient) equal to 0. Rearrange to find the value(s) for x. Substitute the value(s) for x into the original equation for f(x) to find the corresponding y value(s). These are the stationary points on the curve.

CM
Answered by Caroline M. Maths tutor

3290 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know which method of diffirentiation to use?


Find the integral between 4 and 1 of x^(3/2)-1 with respect to x


I'm trying to integrate f(x)=sin(x) between 0 and 2 pi to find the area between the graph and the axis but I keep getting 0, why?


The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences