The Curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx.

The question is asking us to differentiate the equation y = 3x^4 - 8x^3 - 3. To differentiate this equation, we must differentiate term-by-term. In order to differentiate a term, we must multiply the coefficient of the x-term by the power that the x-term is raised to and then reduce the power by one.
So lets begin by differentiating the term 3x^4. We multiply the coefficient (3) by the power that the x is raised to (4) and then reduce the power of the x by 1. Thus when we differentiate 3x^4, we get 12x^3. Similarly, lets differentiate the next term, -8x^3. We multiply the coefficient (-8) by the power of x (3) and then reduce the power of x by one. Hence, differentiating -8x^3 gives us -24x^2. The last term (-3) is a constant. When we differentiate constants, we always get zero as there is no x-term present. So differentiating -3 gives us 0. By grouping each differentiated term, the answer to our question is dy/dx = 12x^3 -24x^2.

DC
Answered by Dharmik C. Maths tutor

5770 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


Differentiate (3x^2-5x)/(4x^3+2x^2)


A school has 1200 pupils. 575 of these pupils are girls. 2/5 of the girls like sports. 3/5 of the boys like sport. Work out the total number of pupils in the school who like sport.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences