Solve the simultaneous equations x + y = 3 and x^2 + y^2 = 5

Find an expression for y
y = 3 - x
sub this into the second equation
x^2 + (3 - x)^2 = 5
then expand the brackets
x^2 + x^2 - 6x + 9 = 5
simplify
2(x^2 - 3x + 2) = 0
factorise
2(x - 2)(x - 1) = 0
so x = 2, 1
to find the y value sub into the original equation to get
y = 3 - 1 = 2
y = 3 - 2 = 1
so the solutions are
y = 2, x = 1
and
y = 1, x = 2

KW
Answered by Kate W. Maths tutor

15623 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rearrange the formula to make 'y' the subject: x = (1 - 2y)/(3 +4y)


How can you calculate the distance between 2 points in a grid if they're not on the same horizontal or vertical line?


Solve x^2 - 5x -14 = 0


The line L passes through the points (-2,3) and (6,9). How do I find the equation of the line that is parallel to L and passes through the point (5,-1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning