Find the sum of the first n odd numbers, 1+ 3 + … + 2n-1, in terms of n. What might a mathematician’s thought process be?

[Answer for a Further Maths A level student]: We could just apply the formula for summing an arithmetic series, but this won’t give a good understanding of why the answer we get is correct, which is always important in maths. So let’s do it from scratch: by calculating the sum in question for some small values of n (when unsure, mathematicians usually experiment), we quickly conjecture (guess) that the answer is n2. But no matter how many values of n we check, a mathematician will not be satisfied until we have a proof for all n. One way to do this is by induction. In this case, this is simple: Base case: the result is certainly true for n=1. Assume that 1+ 3 + … + 2k-1 = k2 Induction: Then 1+ 3 + … + 2k-1 + 2k+1 = k2 + 2k + 1 = (k+1)2 Conclusion: Result is true for all n. But why did the factorisation happen so nicely in the induction step? Draw a k by k square grid. We can see that to turn this into an (k+1) by (k+1) grid, we need to add 2k+1 little squares. This idea gives a lovely way to divide an n by n grid as 1+ 3 + … + 2n-1, allowing us to “see” the answer to the problem. A mathematician might use this insight to discover more things, like the harder result that every power np of a number n is the sum of consecutive odd numbers (hint: consider an n by np-1 grid).  

AB
Answered by Amlan B. Maths tutor

3722 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.


The polynomial p(x) is, p(x)= x3-5x2-8x+48.Use the Factor Theorem to show that (x + 3)is a factor of p(X)


G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences