How is the factor theorem used?

The factor theorem is used to determine factors of large polynomials so that we can split large polynomials into a product of linear polynomials. Say we have a cubic polynomial of the form f(x)=x^3+bx^2+cx+d and we want to know if (x-a) is a factor we need only work out the value of f(a). We have that (x-a) is a factor if and only if f(a)=0 and so if f(a) is not equal to 0 then (x-a) is not a factor. If we want to know if (x+a) is a factor we simply find the value of f(-a).
We can understand the example above by factorising f(x). If we assume (x-a) is a factor of f(x) then we can write f(x)=(x-a)(x^2+ex+f). Here we can see that f(a)=(a-a)((x^2+ex+f) and so f(a)=0.

RD
Answered by Rob D. Maths tutor

3068 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first 4 term of the binomial expansion (2-4x)^5


The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)


Integrate 2x^3 -4x +5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences