How is the factor theorem used?

The factor theorem is used to determine factors of large polynomials so that we can split large polynomials into a product of linear polynomials. Say we have a cubic polynomial of the form f(x)=x^3+bx^2+cx+d and we want to know if (x-a) is a factor we need only work out the value of f(a). We have that (x-a) is a factor if and only if f(a)=0 and so if f(a) is not equal to 0 then (x-a) is not a factor. If we want to know if (x+a) is a factor we simply find the value of f(-a).
We can understand the example above by factorising f(x). If we assume (x-a) is a factor of f(x) then we can write f(x)=(x-a)(x^2+ex+f). Here we can see that f(a)=(a-a)((x^2+ex+f) and so f(a)=0.

RD
Answered by Rob D. Maths tutor

3113 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


How do I sketch a polynomial function?


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


whats the integral of x.e^x wrt x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences