Prove algebraically that 
(2n + 1)^2 – (2n + 1) is an even number for all positive integer values of n. (3 marks)

We can show something is even if it is a multiple of two, as every multiple of two is even. It is useful to see certain tricks, and I will aim to teach you these in my tutorials, these tricks make problems easier and will save you time in your lessons and exams! (2n + 1)2 – (2n + 1) = (2n + 1) [(2n + 1) – 1] = (2n + 1) [2n] = 2 n(2n+1).As (2n + 1)2 – (2n + 1) is a multiple of two (as it is equal to 2n (2n+1)), we have shown that it is an even number for all positive integer values of n. 

BH
Answered by Ben H. Maths tutor

5623 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I decrease a number by 26%, the answer is 9 x10^-7, what was the original number?


Frank, Mary and Seth shared some sweets in the ratio 4:5:7. Seth got 18 more sweets than Frank. Work out the total number of sweets they shared.


Factorising and Expanding Brackets


John ran a race at his school. The course was measured at 450m correct to 2sf and his time was given at 62 econds to the nearest second. Calculate the difference between his maximum and minimum possible average speed. Round you answer to 3sf.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences