Prove algebraically that 
(2n + 1)^2 – (2n + 1) is an even number for all positive integer values of n. (3 marks)

We can show something is even if it is a multiple of two, as every multiple of two is even. It is useful to see certain tricks, and I will aim to teach you these in my tutorials, these tricks make problems easier and will save you time in your lessons and exams! (2n + 1)2 – (2n + 1) = (2n + 1) [(2n + 1) – 1] = (2n + 1) [2n] = 2 n(2n+1).As (2n + 1)2 – (2n + 1) is a multiple of two (as it is equal to 2n (2n+1)), we have shown that it is an even number for all positive integer values of n. 

BH
Answered by Ben H. Maths tutor

6413 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If we take a fair 6 sided die and colour 3 of the faces blue, 2 green and 1 red and then roll the die 300 times, work out and estimate the number of times it will land with the green side up.


Solve the quadratic equation (x^2)-x-12=0 (easy), (x^2)-9=0 (special case), (x^2)+5x-13=0 (quadratic formula)


Part 1 of a test has 60 marks, Part 2 has 100 marks. James scores 75% on part 1 and 48% on part 2. To pass the full test, he needs 60% of the total marks, does he pass?


Find the possible values of x from the equation 3(x^2)+2x-4=2(x^2)+3x+8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning