How do I find the minimum or maximum of a quadratic function?

  • Google+ icon
  • LinkedIn icon
  • 790 views

              Take a general function f(x) = ax²+bx+c

   First thing to do with every problem is sit back and think a bit: there are usually several ways to solve a problem but one will likely be easier and shorter.

 In this case we don’t want to start differentiating the function and looking for points where f’(x)=0 . This method does work, but it can involve quite a bit more fiddling around than other ways.

 Since this is a quadratic this problem can be solved by simply ‘completing the square’ - we need to get our function into the form a(x+d)²+e . With this done we can simply read off the minimum or maximum e reached when x+d=0 (x=-d).

 To get the quadratic into the right form we just need to follow a few simple steps :

1) Factor out a -> ax²+bx+c = a(x²+b/ax+c/a)

2) Add and subtract by a number d to such that the form ‘x² + 2dx + d²’ is present:

= a(x²+b/ax+(b/2a)²-(b/2a)²+c/a)

3) Rearrange the ‘x² + 2dx + d²’ form into ‘(x+d)²’

= a((x+b/2a)²-(b/2a)²+c/a)

4) Multiply out by a to get the final expression

= a(x+b/2a)²-a(b/2a)²+a(c/a)

= a(x+b/2a)²+(-b²/4a+c)

  So here the minimum or maximum is given by (-b²/4a+c). Whether it is a maximum or minimum will depend on the sign of a.

  As you can see the final expression gives us d= b/2a and e= (-b²/4a+c). These values are very quick and easy to derive so do not need to be learned by heart.

Max V. A Level French tutor, A Level Chemistry tutor, A Level Geograp...

About the author

is an online A Level Maths tutor who has applied to tutor with MyTutor studying at Edinburgh University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok