A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).

We know that f'(x) = x^3 + 2*x^0.5 + 8, and we can integrate both sides. This gives us f(x) = (1/4)*x^4 + (4/3)x^(3/2) + 8x + c, remembering to add the constant of integration. Now, we are almost there, but we need to use the first bit of information from the question. The curve y=f(x) passes through (1, 4/3), so when x=1, y=4/3. This is the same as saying that when x=1, f(x)=4/3, i.e. f(1)=4/3. But we know that f(1)= (1/4)*1^4 + (4/3)1^(3/2) + 81 + c, from before (just put 1 instead of x), so setting this equal to 4/3 gives: 1/4 + 4/3 + 8 + c = 4/3, 1/4 + 8 + c = 0, 33/4 + c = 0, c = -33/4. So f(x) = (1/4)*x^4 + (4/3)x^(3/2) + 8x - 33/4.

GC
Answered by George C. Maths tutor

6406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


What is the factor theorem?


integrate by parts ln(x)/x^3


A stone was thrown with velocity 20m/s at an angle of 30 degrees from a height h. The stone moves under gravity freely and reaches the floor 5s after thrown. a) Find H, b)the horizontal distance covered


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences