Integrate the function f(x) = x ln (x) over the interval [1,e].

This problem can be solved using integration by parts (IBP), although using IBP multiple times:BASIC IBP METHOD: given an expression integral(u dv) where u and v are functions of a common variable x and 'dv' (or u') denotes the 1st derivative of the function v we use the following formula:"integral(u dv) = uv - integral(v du)"we evaluate 'du' (1st derivative of u, also denoted u'), where we know uwe evaluate 'v', where we know 'dv' by integrating vthe method rests upon the expression du being mathematically easy to work with as compared with u (e.g. du = 1), and rests upon dv being easy to integrate STEP ZERO: write down problemI = integral( x ln(x)) over [1,e]STEP ONE: find integral(ln x)Trick: split integral into 1* ln(x)choosing u = ln(x), dv = 1, we have du = 1/x and v = x + const.J = integral(u dv) = uv - integral(v du) = xln(x) - integral (1) = xln(x) - x + constantSTEP TWO: solve the problem using integration by parts Trick: we will find the integral that we want evaluated on both sides after applying the IBP formula. I.e. I = (some terms) - I + (some other terms), which can simplify by writing as 2I = (some terms) + (some other terms).choosing u = x, dv = ln(x), we have du = 1 and v = xln(x) - x + const. (given step one)I = integral(u dv) = uv - integral(v du) = [x2(ln(x) - x)]e1 - integral(xln(x) - x)I = [x2(ln(x) - 1)]e1 - I + integral(x) (split right-hand integral and apply trick!)2I = e2(1 - 1) - 1(0 - 1) + [0.5 x2]e1 (evaluate left hand bracketed expression above and integrate x)I = 0 + 0.5 + 0.25 e2 - 0.25 (divide all by 2, evaluate right hand bracketed expression, simplify the overall expression)I = 0.25 e2 + 0.25 (simplify terms with same powers of e)STEP THREE:check working!

JH
Answered by James H. Further Mathematics tutor

4300 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

If a car of mass 1000kg travels up a slope inclined at 5 degrees at a speed of 20 meters per second calculate the power output of the car's engine (assuming a resistive force due to friction of 500N)


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


find an expression for the sum of the series of 1 + 1/2cosx + 1/4cos2x +1/8cos3x + ......


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning