725 views

### When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?

There is a subtle point to be made here, which comes down to double counting.

Pr(A union B) = Pr(A)+Pr(B)-Pr(A intersection B)

allows us to work out the probability that either event A or event B happens: i.e., it tells us for any two events A and B, what is the probability that one of them occurs.

However, this probability is affected by the relationship between the two events themselves. In particular, it matters whether the events are mutually exclusive or not.

Consider the following example:

A class of 20 students contains 12 boys and 8 pupils with blonde hair. What is the probability that a student is either a boy or has blonde hair?

Let event A be that a student is chosen with blonde hair and let event B be that a boy is chosen. Thus we are trying to find Pr(A union B) - what is the probability of event A or B occuring? The natural response is to think it is simply Pr(A) + Pr(B), in this case 8/20+12/20 =20/20=1

However, this is only true if there are no boys with blonde hair. Suppose instead that there are 2 boys with blonde hair in the class. Now the probability of choosing a student that is either a boy or blonde has fallen, since of the 8 remaining girls in the class, 2 do not have blonde hair. So we must calculate:

Pr(A union B) = Pr(A)+Pr(B)-Pr(A intersection B)

Here, Pr(A intersection B) is the probability that a student is a blonde boy, which is 2/20. Therefore, our new probability is:

Pr(A union B)=8/20+12/20-2/20=18/20

If we did not subtract the term at the end, we would be double counting the blonde haired boys firstly as boys and then as students with blonde hair, fogetting that they are one and the same individual in 2 cases.

To make this point another way, consider a Venn diagram. With two mutually exclusive events, two circles in the Venn diagram do not overlap. With non-mutually excusive events, the circles do overlap. The overlap is the intersection, calculated here as 2/20. If we do not subtract this intersection from Pr(A) +Pr(B), we double count it, giving us the wrong probability of both events happening.

2 years ago

Answered by Lewis, an A Level Maths tutor with MyTutor

## Still stuck? Get one-to-one help from a personally interviewed subject specialist

#### 306 SUBJECT SPECIALISTS

£30 /hr

Shruti V.

Degree: Biomedical Engineering (Masters) - Southampton University

Subjects offered:Maths, Physics+ 2 more

Maths
Physics
Chemistry
-Personal Statements-

“I am patient and friendly and strive for a comfortable and fun working environment that also achieves results.”

£20 /hr

Giorgos A.

Degree: Mechanical Engineering with Renewable Energy (Masters) - Edinburgh University

Subjects offered:Maths, Physics

Maths
Physics

“Feel rewarded helping younger students. Nobody is born knowing everything, life is a learning process and my aim is to help you achieve your goals.”

MyTutor guarantee

£20 /hr

Scott R.

Degree: PGCE Secondary Mathematics (Other) - Leeds University

Subjects offered:Maths, Further Mathematics

Maths
Further Mathematics

“About Me: I am current studying a PGCE at Leeds University and should be a fully qualified teacher by the end of June 2017. I also studied maths at Leeds where I got my degree. I have always had a passion for maths and my objective is...”

Lewis G.

Currently unavailable: for new students

Degree: MPhil in Economics Research (Masters) - Cambridge University

Subjects offered:Maths, Economics

Maths
Economics

“About me: I'm currently a graduate economics student at Cambridge University. Before Cambridge, I was at Warwick University, where I read Philosophy, Politics and Economics, graduating with First Class honours and ranked joint 1st ove...”

### You may also like...

#### Other A Level Maths questions

What is the chain rule, product rule and quotient rule and when do I use them?

How do I prove that an irrational number is indeed irrational?

The graph with equation y= x^3 - 6x^2 + 11x - 6 intersects the x axis at 1, find the other 2 points at which the graph intersects the x axis

Use integration by parts to find the integral of xsinx, with respect to x

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this.