How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2

(Explain why it is called "parametric"). The definition of chain rule says that we can re-write the derivative dy/dx in terms of the "parameter t" by dy/dx = (dy/dt) X (dt/dx). (Explain why this is the case).
So we have two equations, x and y, both equal to some perimeter t. To calculate the derivative dy/dx is simply the same as calculating the derivatives w.r.t "t" (either by inspection, product, or quotient rules) and then we multiply them together using the definition. That is dx/dt = 3(t-1)^2 , dy/dt = 3+16t^ (−3). So (using the definition) dy/dx=(3+16t^ (−3)) X ( 1/3(t-1)^2) = (3 + 16𝑡^−3)/(3(𝑡 − 1)^ 2). 

AF
Answered by Adil F. Maths tutor

3483 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?


A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


You deposit 500 pounds at time t=0. At t=5 years, you have 800 pounds. The amount of money you have in the bank can be modeled as V(t)=A*(1+r)^t, where r is the interest rate. Find A and the interest rate r. After how many years will you have 1200 pounds.


Differentiate y = arcsin(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences