Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .

Using V = pi* integral of y2 between b and a with respect to x , where V is the volume of generated solid.y2 = 2x + 1 Integrating between given limits yields a result of 3.75Multiplying through by pi leaves the final result as 3.75 pi as an exact solution .

DS
Answered by Dominik S. Maths tutor

3166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


Express Cosx-3Sinx in form Rcos(x+a) and show that cosx-3sinx=4 has no solution MEI OCR June 2016 C4


Given that y = (sin(6x))(sec(2x) ), find dy/dx


How do you integrate the function cos^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning