Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .

Using V = pi* integral of y2 between b and a with respect to x , where V is the volume of generated solid.y2 = 2x + 1 Integrating between given limits yields a result of 3.75Multiplying through by pi leaves the final result as 3.75 pi as an exact solution .

DS
Answered by Dominik S. Maths tutor

3174 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the function y = x.sin(x); differentiate the function with respect to x


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


f(x) = 2 / (x^2 + 2). Find g, the inverse of f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning