A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.

y = x3 - 3x2 - 24x + 5, First, calculate the derivative of y and find its roots when y = 0:dy/dx = 3x2 - 6x -24 = 0 -> x2 - 2x - 8 = 0 -> (x+2)(x-4) = 0Therefore the coordinates of the stationary points are x = -2, 4. Now calculate the second derivative of y and insert these x values:d2y/dx2 = 6x - 6,For x = -2: d2y/dx2 = -12 - 8 = -18, this result is < 0 so this point is a maximum point.For x = 4, d2y/dx2 = 24 - 6 = 18, this result is > 0 so this point is a minimum point.

TS
Answered by Ted S. Maths tutor

7762 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


What is the partial fraction expansion of (x+2)/((x+1)^2)?


Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning