A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.

y = x3 - 3x2 - 24x + 5, First, calculate the derivative of y and find its roots when y = 0:dy/dx = 3x2 - 6x -24 = 0 -> x2 - 2x - 8 = 0 -> (x+2)(x-4) = 0Therefore the coordinates of the stationary points are x = -2, 4. Now calculate the second derivative of y and insert these x values:d2y/dx2 = 6x - 6,For x = -2: d2y/dx2 = -12 - 8 = -18, this result is < 0 so this point is a maximum point.For x = 4, d2y/dx2 = 24 - 6 = 18, this result is > 0 so this point is a minimum point.

TS
Answered by Ted S. Maths tutor

7370 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2 + y^2 +8x -12y = 12


solve the equation 2cos x=3tan x, for 0°<x<360°


Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.


Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences