Differentiate the function y = (x^2)/(3x-1) with respect to x.

This requires use of the quotient rule: d/dx[f(x)/g(x)] = [g(x)f'(x) - g'(x)f(x)]/[g(x)^2]dy/dx = ([(3x-1)*2x] - 3x^2)/[(3x-1)^2],= (3x^2-2x)/[(3x-1)^2],=[x(3x-2)]/[(3x-1)^2]

TS
Answered by Ted S. Maths tutor

6047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a limit?


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


differentiate x^2 + y^3 + xy respect to x


What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences