Differentiate the function y = (x^2)/(3x-1) with respect to x.

This requires use of the quotient rule: d/dx[f(x)/g(x)] = [g(x)f'(x) - g'(x)f(x)]/[g(x)^2]dy/dx = ([(3x-1)*2x] - 3x^2)/[(3x-1)^2],= (3x^2-2x)/[(3x-1)^2],=[x(3x-2)]/[(3x-1)^2]

TS
Answered by Ted S. Maths tutor

6500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3+2x^2-x-2 . Solve for f(x) = 0


Differentiate e^(xsinx)


When do you know to use integration by parts?


What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning