Differentiate the function y = (x^2)/(3x-1) with respect to x.

This requires use of the quotient rule: d/dx[f(x)/g(x)] = [g(x)f'(x) - g'(x)f(x)]/[g(x)^2]dy/dx = ([(3x-1)*2x] - 3x^2)/[(3x-1)^2],= (3x^2-2x)/[(3x-1)^2],=[x(3x-2)]/[(3x-1)^2]

TS
Answered by Ted S. Maths tutor

6093 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 5sinxcosx + 5cosx


Express (1 + 4 * 7^0.5)/(5 + 2 * 7^0.5) in the form m + n * 7^0.5


Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


Find the turning points of the curve y = 3x^4 - 8x^3 -3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences