Differentiate the function y = (x^2)/(3x-1) with respect to x.

This requires use of the quotient rule: d/dx[f(x)/g(x)] = [g(x)f'(x) - g'(x)f(x)]/[g(x)^2]dy/dx = ([(3x-1)*2x] - 3x^2)/[(3x-1)^2],= (3x^2-2x)/[(3x-1)^2],=[x(3x-2)]/[(3x-1)^2]

TS
Answered by Ted S. Maths tutor

6727 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 1/(x^2+4x+13)


Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


Find the intergal of 2x^5 -1/(4x^3) -5 giving each term in its simplest form.


Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning