Solve the differential equation (1 + x^2)dy/dx = x tan(y)

Firstly rearrange the equation so that only dy/dx is on the left hand sidedy/dx = (x/(1+x^2)) tan(y)Now separate the variables such that the x terms are on one side with the dx, and the y terms are on the other side with the dy. Now we can place integral signs on both sides.∫ 1/tan(y) dy = ∫ (x/(1+x^2)) dx
Now use the identity cot(y) = 1/tan(y)
∫ cot(y) dy = ∫ (x/(1+x^2)) dx
Now integrate both sides and remember to include the constant of integration, the '+c'
ln |sin(y)| = (1/2)ln |1+x^2| + c

CG
Answered by Christian G. Maths tutor

6192 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


Prove cosec2A-cot2A=tanA


Integrate ⌠( xcos^2(x))dx


Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning