Solve the differential equation (1 + x^2)dy/dx = x tan(y)

Firstly rearrange the equation so that only dy/dx is on the left hand sidedy/dx = (x/(1+x^2)) tan(y)Now separate the variables such that the x terms are on one side with the dx, and the y terms are on the other side with the dy. Now we can place integral signs on both sides.∫ 1/tan(y) dy = ∫ (x/(1+x^2)) dx
Now use the identity cot(y) = 1/tan(y)
∫ cot(y) dy = ∫ (x/(1+x^2)) dx
Now integrate both sides and remember to include the constant of integration, the '+c'
ln |sin(y)| = (1/2)ln |1+x^2| + c

CG
Answered by Christian G. Maths tutor

5914 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis


How do you solve trigonometric equations?


a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


Differentiate y=4x^2+3x+9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences