Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis

First find the coordinates of the point in question:We know x=0By plugging this into the equation of the line we get y=(0-2)2 = (-2)2 = 4Therefore the point is (0,4)
To find the gradient of a line, we differentiate the equation of the line:By substitution -> y=u2 , u=x-2dy/dx=dy/du.du/dxdy/du = 2u , du/dx=1Therefore dy/dx =2u=2x-4Subbing in known coordinate into this equation we get:dy/dx(x=0,y=4) = -4Answer = -4

AJ
Answered by Alec J. Maths tutor

3817 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


Show that arctan(x)+e^x+x^3=0 has a unique solution.


Find the gradient of a curve whose parametric equations are x=t^2/2+1 and y=t/4-1 when t=2


differentiate 4x^3 + 3x^2 -5x +1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning