Differentiate x^x

This can't be differentiated with the usual methods (chain rule, product rule). First we set y = xx, and our objective is to calculate dy/dx in terms of x.
To turn this function into more familiar functions, we log both sides:
ln y = ln(xx) = x ln x
where in the second equality we have used the logarithm rule ln(ab) = b ln a.
Then we differentiate both sides with respect to x. For the left hand side, we use the chain rule, dz/dx = (dz/dy) * (dy/dx), with z = ln y:
d(ln y)/dx = d(ln y)/dy * dy/dx = (1/y) * dy/dx
On the right hand side, we use the product rule, d(uv)/dx = u * dv/dx + v*du/dx, with u = x and v = ln x:
d(x ln x)/dx = x * (1/x) + ln x * 1 = 1 + ln x
So then we have
(1/y) * dy/dx = 1 + ln x
and our goal is to find dy/dx in terms of x only. To do this, we multiply both sides by y and substitute y = xx, leaving
dy/dx = xx (1 + ln x)

JT
Answered by Joel T. Maths tutor

13149 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


Solve the differential equation (1 + x^2)dy/dx = x tan(y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning