Show that (x+2)(x+3)(x+5) can be written in the form ax^3 + bx^2 + cx +d, where a,b, c and d are positive integers

I would tell them to start multiplying out the first brackets (x+2)(x+3)! I would do this by timesing x by everything in the second bracket and then 2 by everything in the second brakcet! Giving the answer x2 + 3x + 2x + 6! Then I would explain because 3x are both factors of x, they can be added together as 5x! So i would now times my answer that I have just got to the third bracket! (x2+ 5x+ 6)(x+5)and now I would use the same method as before by timesing each bit of the second bracket by x2 ,giving x3 + 5x2 Then times everything in the second bracket by 5x, giving 5x2 +25x! and then finally timesing the second bracket by 6! Giving 6x + 30 !
Now if put it all together I have x^3 + 5x^2 + 5x^2 + 25x + 6x +30! And if we add all the integers that have he same factor, for example 25x + 6x will go together to me 31x, we got x^3 + 10x^2 +31x +30

BP
Answered by Bridget P. Maths tutor

7905 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the simultaneous equations 2x^2-y^2=17 and x+2y=1


Solve 3x - 5 = 13


Find an expression for the nth term of this sequence: 3 - 11 - 19 - 27 - 35 . The nth term of a different sequence is 2n^3 + 3. Write down the first 3 terms of this sequence.


Find the exact length of side A in the triangle and give you answer in the simplest form. (It is a right angled triangle. Side C is (6+√(3)) and side B is (3 + 2√(3)).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning