Find the Binomial Expansion of (1-5x)^4.

First I would set up how i was taught using Pascals Triange. As this is to the power of 4 the numbers across will be 1 4 6 4 1.Then I would multiply each number by the correct power of either (-5x) or (1). As I know that if (-5x) is to the power of 2, 1 must be to the power of 2.
This gives me (1 * (1)^4 * (-5x)^0) + (1 * (1)^3 * (-5x)^1) + (1 * (1)^2 * (-5x)^2) + (1 * (1)^1 * (-5x)^3) + (1 * (1)^0 * (-5x)^4).
Anything to the power of 0 is 1 and using this I get the answer1 - 5x + 25x^2 - 125x^3 + 625x^4

MV
Answered by Mahomed-Umair V. Maths tutor

6352 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the values of (1) loga(a) and (2) loga(a^3) [(1) log base a, of a (2) log base a of (a^3)]


Why don't I have to put the +C after my answer for a definite integral?


Prove the trigonometric identity tan^2(x)+1=sec^2(x)


Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning