Find the Binomial Expansion of (1-5x)^4.

First I would set up how i was taught using Pascals Triange. As this is to the power of 4 the numbers across will be 1 4 6 4 1.Then I would multiply each number by the correct power of either (-5x) or (1). As I know that if (-5x) is to the power of 2, 1 must be to the power of 2.
This gives me (1 * (1)^4 * (-5x)^0) + (1 * (1)^3 * (-5x)^1) + (1 * (1)^2 * (-5x)^2) + (1 * (1)^1 * (-5x)^3) + (1 * (1)^0 * (-5x)^4).
Anything to the power of 0 is 1 and using this I get the answer1 - 5x + 25x^2 - 125x^3 + 625x^4

MV
Answered by Mahomed-Umair V. Maths tutor

6015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=ln(2x^2) with respect to x


Differentiate: (12x^3)+ 4x + 7


A function is defined by f(x)=x/(2x-2)^(1/2): (a)Determine the maximum domain of f. (b)Differentiate f. (c)Find the inflection points of the function's graph.


sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences