How do you integrate the equation x^2 + 4x + 3 dx? (

Integrating the equations: x2 + 4x + 3 dx. To integrate, the method is to look each parts of the equation, e.g. the x2 firstly. We would add 1 to the power to get x3 . Then we would divide this by our new power (3) to get 1/3 x3. Next we would look at 4x: We can see that x here is to the power 1. So again as before, we would add 1 to the power to get 4x2. Then we divide by the new power to get 2x2. Next is the 3: This is interesting as there is no x here, however we can think of the 3 as 3x0. This is because x0 is equal to 1. So if we are to integrate we would add 1 to the power and divide by the new power as before to get: 3x. When integrating we also have to take into account the constant (c) that we add to our new equation. So our final equation would be 1/3 x3 + 2x2+ 3x + c.

SN
Answered by Saba N. Maths tutor

7779 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


show that tan(x)/sec2(x) = (1/2)sin(2x)


The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


Find the roots of y=x^{2}+2x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning