f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi

a) 54-45+3a+18=0 3a+27=0 3a=-27 and thus a=-9b) 2x^3 – 5x^2 -9x + 18 = (x-3) (2x^2 +bx-6)to find b ; collect the x^2 terms so bx^2-6x^2=-5x^2 and thus b=1c) when comparing f(y) and f(x) we see that x=3^2yf(x)=(x-3) , (2x-3) , (x+2)so x = 3 x=3/2 and x=-2when x=3 , y=1when x=-2 , no solution and when x=2/3 , take logs woth base of 3 and you get y=0.3690

AK
Answered by Akrit K. Maths tutor

8603 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


Express the following in partial fractions: (1+2x^2)/(3x-2)(x-1)^2


How do I find the minimum point for the equation y = x^2 -5x - 6?


Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning