f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi

a) 54-45+3a+18=0 3a+27=0 3a=-27 and thus a=-9b) 2x^3 – 5x^2 -9x + 18 = (x-3) (2x^2 +bx-6)to find b ; collect the x^2 terms so bx^2-6x^2=-5x^2 and thus b=1c) when comparing f(y) and f(x) we see that x=3^2yf(x)=(x-3) , (2x-3) , (x+2)so x = 3 x=3/2 and x=-2when x=3 , y=1when x=-2 , no solution and when x=2/3 , take logs woth base of 3 and you get y=0.3690

AK
Answered by Akrit K. Maths tutor

7990 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A school has 1200 pupils. 575 of these pupils are girls. 2/5 of the girls like sports. 3/5 of the boys like sport. Work out the total number of pupils in the school who like sport.


FInd the equation of the line tangent to the graph g(x)=integral form 1 to x of cos(x*pi/3)/t at the point x=1


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


Time, T, is measured in tenths of a second with respect to distance x, is given by T(x)= 5(36+(x^2))^(1/2)+4(20-x). Find the value of x which minimises the time taken, hence calculate the minimum time.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning