Solve this set of simultaneous equations. 1. 4x+2y=12 2. 2x+3y=10

To solve simultaneous equations we need to make either the y coefficients or the x coefficients equal so that we can cancel them out. For this set of equations we are going to make the x coefficients the same. To make them the same we need to find a common factor. In this example the common factor of 4 and 2 is 4. We need to multiply our equations to make 4 the coefficient of x for both. Therefore, we need to multiply equation 1 by 1 and equation 2 by 2. This gives us the equations 1. 4x+2y=12 and 2. 4x+6y=20. In order to cancel out the x's we need to subtract equation 1 from equation 2. This gives 4y=8. We are now able to work out the value of y as only have one unknown. To find y we divide both sides by 4 so y=2.
Now that we know the value of y we can substitute it into one of the original equations to find the value of x. We know y=2 so if we substitute this into equation 1 this gives us 4x+4=12. We now only have one unknown in this equation so can rearrange it to find x. Subtract 4 from both sides to get 4x=8. Finally divide both sides by 4 to give x=2. The final answer is y=2, x=2.

GB
Answered by Georgia B. Maths tutor

4268 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve a quadratic equation?


What is the lowest common multiple and the highest common factor of 120 and 150?


Complete the square of the equation below.


Show that the recurring decimal 0.13636... can be written as the fraction 3/22


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning