The parametric equations of a curve are: x = cos2θ y = sinθcosθ. Find the cartesian form of the equation.

x = cos2θ  y = sinθcosθcos2θ = cos2 θ  - sin2θ cos2 θ  + sin2θ  = 12cos2 θ  = 1 + cos2θ cos2 θ  = 1/2(1 + x)2sin2θ  = 1 - cos2θ sin2θ  = 1/2 (1 - x)y2= sin2θcos2 θy2=  ( 1/2(1 + x)) . (1/2 (1 - x))4y2 = 1 - x2 x2 + 4y2 = 1

AN
Answered by Amelia N. Maths tutor

8440 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


How do you factorise a quadratic equation?


The curve C has equation y=3x^3-11x+1/2. The point P has coordinates (1, 3) and lies on C . Find the equation of the tangent to C at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning