How to find the angle between two 3-dimensional vectors:

The formula to find the cosine of the angle is: cosA= u.v/|u|x|v|; 1.u.v means that you multiply the x coordinates together, then the y coordinates and the z coordinates, and add them all together: (x1x2+y1y2+z1z2); 2.|u|x|v| means that you have to find the distance from the origin forboth coordinates and times them together: √(x12+y12+z12)√(x22+y22+z22). 3. This means that if vector u is (2,3,4) and vector v is (5,6,7), the cosine of the angle between them willbe:cosA=(2x5+3x6+4x7)/√(22+32+42)x√(52+62+72) = (10+18+28)/√(4+9+16)x√(25+36+49)=56/√29x√110=0.9915; and therefore A= cos-10.9915= 7.47579˚≈ to 3 s.f.

FF
Answered by Fruzsina F. Maths tutor

5060 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure


Compute the indefinite integral of x^8 ln(3x)dx


Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning