How do you integrate ?

In order to integrate an algebraic term, such as 8x3 + 4, one must first take the power of the first term and increase this by 1, getting 8x4. Secondly, divide the coefficient on x by the new power, in this case 8/4. Resulting in the first term being 2x4. Then, do the same to the second term. Here, the number 4 is technically 4x0, but of course, x0=1. Hence, 4x1=4. So again, 4x0 becomes 4x1. Then divide 4 by 1, which gives 4. therefore the second term is 4x1. Thus, the integral of 8x3 +4 is 4x4 + 4x + C. C being a constant that can be derived when limits are placed on the integral. Here is the formula for integration: Integral of un = un+1 /(n+1) + C ,

LH
Answered by Louie H. Maths tutor

3547 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is (5+3i)*(3+5i)


Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.


An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


Find (dy/dx) of x^3 - x + y^3 = 6 + 2y^2 in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning