How do you integrate ?

In order to integrate an algebraic term, such as 8x3 + 4, one must first take the power of the first term and increase this by 1, getting 8x4. Secondly, divide the coefficient on x by the new power, in this case 8/4. Resulting in the first term being 2x4. Then, do the same to the second term. Here, the number 4 is technically 4x0, but of course, x0=1. Hence, 4x1=4. So again, 4x0 becomes 4x1. Then divide 4 by 1, which gives 4. therefore the second term is 4x1. Thus, the integral of 8x3 +4 is 4x4 + 4x + C. C being a constant that can be derived when limits are placed on the integral. Here is the formula for integration: Integral of un = un+1 /(n+1) + C ,

LH
Answered by Louie H. Maths tutor

3258 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


How many lines of method should I write in order to get all of the marks?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning