How do you integrate ?

In order to integrate an algebraic term, such as 8x3 + 4, one must first take the power of the first term and increase this by 1, getting 8x4. Secondly, divide the coefficient on x by the new power, in this case 8/4. Resulting in the first term being 2x4. Then, do the same to the second term. Here, the number 4 is technically 4x0, but of course, x0=1. Hence, 4x1=4. So again, 4x0 becomes 4x1. Then divide 4 by 1, which gives 4. therefore the second term is 4x1. Thus, the integral of 8x3 +4 is 4x4 + 4x + C. C being a constant that can be derived when limits are placed on the integral. Here is the formula for integration: Integral of un = un+1 /(n+1) + C ,

LH
Answered by Louie H. Maths tutor

3676 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.


Solve the inequality 4x^2​>5x-1


A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


How many lines of method should I write in order to get all of the marks?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning