Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined

We want to get the the sqrt(27) and sqrt(192) so that they have the same number in the square so they can then be added together. We will look at the factorisation of 27, 192. We can see 27 is divisible by 3, 3x9, so we can say sqrt(27) = sqrt(3) * sqrt(9) as the sqrt(9) is 3, we can write sqrt(27) = 3* sqrt(3). Now we look at 192 and we want it to be in the form asqrt(3) so we look divide 192 by 3 to get 64. So we know sqrt(192) = sqrt(64)sqrt(3) as sqrt(64) = 8 we can write sqrt(64) as 8. Hence we have sqrt(192) = 8sqrt(3) so sqrt(192) + sqrt(27) = 8sqrt(3) + 3sqrt(3) = 11sqrt(3). Hence a,b equal 11,3 respectively and we can see that a,b are both prime.

LH
Answered by Luke H. Maths tutor

3412 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


A curve has equation y=2x^3. Find dy/dx.


The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


Show that (1 - cos(2x)) / (1 + cos(2x)) = sec^2(x) - 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning